(8) Riddtck, J. A.; Bungor, W. B.; Sakano, T. K. Organic Sotvents . Physical Properties and Methods of Purification, 4th od.; Wiley: New York, 1986.
(9) Treszczanowlcz, T.; Kehlalan, H. Bull. Acad. Pol. Scl. Ser ., Scl Chim. 1973, 21, 97.
(10) Tsonopoulos, C. AIChE J. 1974, 20, 263.
(11) Herington, E. F. G. Insthute of Petroleum Journal 1951, 37, 457.
(12) Margules, M. Shtzungsber. Akad. Wiss. Wien 1085, 104, 1243.
(13) Van Laar, J. J. Z. Phys. Chem. 1028, 137, 421.
(14) Wilson, G. M. J. Am. Chem. Soc. 1984, $86,127$.
(15) Renon, H.; Prausnitz, J. M. AlChe J. 1908, 14, 135
(16) Abrams, D.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
(17) Gmehling, J.; Onken, U. Vapor-Llquid Equiltbrium Data Colloction; DECHEMA: Frankfurt/Main, Germany, 1977; Vol. I, Part 1.

Recelved for review March 14, 1990. Revised December 17, 1990. Accepted December 17, 1990. We thank the C.A.M. de Burgos for financlai support.

Vapor-Liquid Equillbrium in the System Carbon Dioxide + Cyclopentane from 275 to $\mathbf{4 9 3} \mathrm{K}$ at Pressures to $\mathbf{1 2 . 2} \mathbf{~ M P a}$

Nllesh N. Shah, John A. Zollweg,* and Whllam B. Streett
School of Chemical Engineering, Olin Hall, Cornell University, Ithaca, New York 14853

Abstract

Isothermal vapor-liquid equllibrlum data have been measured for the carbon diloxide + cyclopentane system at 15 temperatures from 276.64 to 493.11 K and at pressures to 12.2 MPa . The mixture critical line has been located and is shown to be continuous in $p-T-x$ space between the critical polnts of the pure components. The results are compared with the only other set of measurements on thls system in the literature, which were made at temperatures below 333 K . The data sets are also correlated by using two cublc equations of state, the Soave-Redilich-Kwong and Peng-Robinson equations. Both equations provide phase compositions in good agreement whth expertment except near the critical points of mixtures. Binary Interaction parameters for the system are reported for both equations of state over the entire temperature range.

Introduction

This study is a continuation of a research program to provide vapor-llquid equllbbrlum (VLE) data on binary systems of interest to the petroleum and natural gas industry. VLE data for CO_{2} $+n$-pentane (1), $\mathrm{CO}_{2}+n$-butane (2), and $\mathrm{CO}_{2}+2,2$-dimethylpropane (3) have been reported previously. There is a recent report of VLE data for the binary system $\mathrm{CO}_{2}+$ cyclopentane at three temperatures by Eckert and Sandler (4). Their work did not include measurement of mixture critical points, and it covers only a small portion of the temperature range of va-por-liquild equilibrium for this system. This paper presents VLE data at temperatures to within 20 K of the critical temperature of cyclopentane and at pressures to the critical line of the mixture.

Experimental Section

The apparatus and the procedure used in this study are essentlally the same as those used by Shah et al. (3) and the studies mentloned in that paper. It is a vapor recirculation system designed for the measurement of liquid- and vaporphase compositions as a function of pressure at fixed temperature. The detalis of the method have been given in earler papers (5-7).

Two sets of apparatus were used in thls study, depending on the temperature. A high-temperature apparatus was used for temperatures greater than 320 K . One change was made in the apparatus for this study. The glass-windowed equillibrium cell was replaced by a stainiess steel cell fitted with eight small windows of synthetic sapphire. This cell was used earlier by

Pozo and Streett (5) to study the dimethyl ether + water system. More details about the cell are available there. The low-temperature apparatus used for the isotherms below 320 K was the same as that described by Shah et al. (3).

Temperature was measured on IPTS-68 using a platinum resistance thermometer and Mueller bridge with an accuracy of 0.02 K . Pressures were measured with an uncertainty of 0.007 MPa or 0.5% (whichever is greater) by using a digital pressure gauge (Autoclave Engineers, Inc., Model DPS-0021) calibrated in this laboratory against a Ruska DDR-6000 di-rect-reading quartz spiral gauge that was in turn calibrated against a Ruska dead-weight gauge.
The phase compositions were determined by withdrawing samples through capillary lines and analyzing them with a Hewlett-Packard Model 5840A gas chromatograph equipped with a thermal conductivity detector. A stainless steel column ($0.312-\mathrm{cm}$ o.d., $50.8-\mathrm{cm}$ length) packed with 100/120 mesh Porapak Q was used for separation of CO_{2} and cyclopentane. The gas chromatograph was callbrated by using mixtures of known composition that were prepared gravimetrically. The phase compositions reported here are estimated to be accurate within $0.3 \mathrm{~mol} \%$ near the middle of the mole fraction range and better near the extremes. In the immedlate vicinity of the critical line, the uncertainty may be as large as $0.5 \mathrm{~mol} \%$.

The CO_{2} used in this work was supplied by Air Products and Chemicals Inc. and had a purty of $99.99 \mathrm{~mol} \%$. The cyclopentane was supplied by Phillips Petroleum Co. with a minimum purity of $99 \mathrm{~mol} \%$. These chemicals were used without further purification.

Results

Vapor and liquid compositions have been measured at 15 temperatures from 276.64 to 493.11 K and pressures to 12.2 MPa . The experimental results are presented in Table I, and the isotherms are plotted on a pressure-composition ($p-x$) diagram in Figure 1. The system exhiblts large positive deviations from Raoult's law at low pressures. The pressuretemperature ($D-T$) extent of the reglon covered by this study, together with a few isopleths, is shown in Figure 2. AB and CD are the vapor pressure curves for CO_{2} and cyclopentane, respectively, with critical points B and D. BED is the mixture critical line. Data for the critical line are Hsted in Table II. The critical pressure and composition for each isotherm were located by performing an extrapolation using the equllibrium values at the four or five highest pressures in an algortithm that uses the assumption that the variation of composition with pressure about the critical value is cubic. Phase compositions were measured at pressures within $\sim 0.3 \mathrm{MPa}$ of the critical

Figure 1．Experimental isotherms for the carbon dioxide + cyclo－ pentane system．Symbols denote isotherms as follows：©， 276.64 K；O，293．14 K；ゅ，313．08 K；ゅ，328．23 K；•，344．70 K；৩， 358.06 $\mathrm{K} ; \boldsymbol{\Delta}, 375.15 \mathrm{~K} ; \Delta, 388.11 \mathrm{~K}$ ；（smaller）， 403.07 K ；口， 419.15 K ； $\boldsymbol{\otimes}$ ， 433．21 K；】，448．81 K；Z，463．23 K；田， 478.17 K ；＊， 493.11 K ． Critical points are denoted by（larger）and the critical line is shown as a wide shaded curve．
pressure on most isotherms．For those isotherms where no measurements were made close to the critical pressure，the extrapolated values are somewhat more uncertain．In Figure $3, K$ values are plotted as a function of pressure（ $K_{i} \equiv y_{i} / x_{i}$ ， where y_{i} is the mole fraction of component i in the vapor phase and x_{i} is the mole fraction of component i in the liquid phase） for four representative isotherms．K values for CO_{2} ，the more volatile component，are always greater than unity，and the K values for cyclopentane are less than unity．Below the critical temperature of CO_{2} ，an isotherm in the K－value diagram is composed of two separate branches，one for each component， but above that temperature，the branches converge at a critical point where $K=1$ and the curve has a vertical tangent． Smooth K－value plots indicate internal consistency of the VLE data，as they tend to exaggerate scatter in the results．At low pressures，which correspond to dilute solutions of CO_{2} in cy－ clopentane，the isotherms should asymptotically approach unit negative slope in logarithmic coordinates because the solute $\left(\mathrm{CO}_{2}\right)$ should obey Henry＇s law and the solvent（cyclopentane） should obey Raoult＇s law．

Comparison with Published Data

There were no published data for this system when this study was started．Since then，Eckert and Sandler（4）have published data for three isotherms not far from the critical temperature of CO_{2} ．They did not measure the critical pressures for the isotherms but have reported estimations made by using a cubic equation of state．The results presented here are in good

Figure 2．Pressure－temperature diagram for carbon dioxide + cy－ clopentane．The shaded area is the $p-T$ region covered in this work． $A B$ and $C D$ are the vapor pressure curves of carbon dioxide and cyclopentane，respectively，and BED is the mixture critical line．Critical points are denoted by \square and triple points by O ．Four isopleths are also shown．Each is labeled with its mole fraction of CO_{2} to the right of the vapor branch．
agreement with those estimates．Since their measurements were made at different temperatures from ours，comparison of isotherms on a $p-x$ diagram is not very useful．Instead，we have cross－plotted both sets of data as isobars on a $T-x$ dia－ gram in Figure 4．Because measurements were not made at low temperatures，part of the $1-\mathrm{MPa}$ isobar is not shown．The data agree well at the higher temperature，but at lower tem－ peratures their phase compositions tend to be richer in CO_{2} ．

Equation of State Calculations

The experimental data have been compared with the pre－ dictions of two equations of state，the Soave－Redlich－Kwong （SRK）equation（8）and the Peng－Robinson（PR）equation（9）： SRK equation

$$
\begin{equation*}
P=\frac{R T}{V-b}-\frac{a}{V(V+b)} \tag{1}
\end{equation*}
$$

PR equation

$$
\begin{equation*}
P=\frac{R T}{V-b}-\frac{a}{V(V+b)+b(V-b)} \tag{2}
\end{equation*}
$$

The parameters a and b are concentration－dependent．The mixing rules for binary mixtures are
SRK

$$
\begin{align*}
& a=a_{11} x_{1}{ }^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \tag{3}\\
& b=b_{11} x_{1}{ }^{2}+2 b_{12} x_{1} x_{2}+b_{22} x_{2}^{2} \tag{4}
\end{align*}
$$

PR

$$
\begin{gather*}
a=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \tag{5}\\
b=b_{11} x_{1}+b_{22} x_{2} \tag{6}
\end{gather*}
$$

where

$$
\begin{gather*}
a_{12}=\left(1-k_{12}\right)\left(a_{11} a_{22}\right)^{1 / 2} \tag{7}\\
b_{12}=\left(1-j_{12}\right)\left(b_{11}+b_{22}\right) / 2 \tag{8}
\end{gather*}
$$

Table I. Equilibrium Phase Properties of the Carbon Dioxide (1) + Cyclopentane (2) System: Pressure p, Temperature T, Liquid Mole Fraction x_{1}, and Vapor Mole Fraction y_{1}

$\mathrm{p} / \mathrm{MPa}$	x_{1}	y_{1}	p / MPa	x_{1}	y_{1}	p / MPa	x_{1}	y_{1}	p / MPa	x_{1}	y_{1}
$T=276.64 \mathrm{~K}$			$T=293.14 \mathrm{~K}$			$T=313.08 \mathrm{~K}$			$T=328.23 \mathrm{~K}$		
0.0166	0.000	0.000	0.0346	0.000	0.000	0.0740	0.000	0.000	0.1228	0.000	0.000
0.234		0.918	0.200		0.796	0.200		0.590	0.290		0.512
0.386	0.043		0.276		0.860	0.331	0.026	0.758	0.503	0.029	0.718
0.607	0.070	0.936	0.421	0.036	0.905	0.683	0.047	0.876	0.855	0.051	0.827
0.958	0.121	0.957	0.607		0.924	1.207	0.090	0.918	1.393	0.088	
1.372	0.182	0.968	1.014	0.099	0.949	1.855	0.148	0.942	2.062	0.142	0.906
1.862	0.274	0.983	1.531	0.156	0.964	2.579	0.216	0.951	2.765	0.196	0.931
2.337	0.377	0.978	2.227	0.243	0.967	3.296	0.288	0.956	3.434	0.250	0.936
2.813	0.556	0.983	2.896	0.338	0.975	4.020	0.372	0.962	4.151	0.308	0.943
3.261	0.810	0.990	3.592	0.479	0.977	4.723	0.464	0.962	4.819	0.367	0.950
3.482	0.901		4.240	0.675	0.978	5.454	0.579	0.964	5.516	0.441	0.955
3.723	1.000	1.000	4.688	0.826	0.985	6.178	0.710	0.967	6.185	0.513	0.957
			5.143	0.924	0.984	6.860	0.832	0.967	6.888	0.597	0.953
			5.461	0.970	0.987	7.536	0.917	0.963	7.550	0.687	0.950
			5.757	1.000	1.000	7.881	0.952	0.969	8.239	0.778	0.950
									8.853	0.856	0.948
$T=344.70 \mathrm{~K}$			$T=358.06 \mathrm{~K}$			$T=375.15 \mathrm{~K}$			$T=388.11 \mathrm{~K}$		
0.1993	0.0W)	0.000	0.2877	0.000	0.000	0.4119	0.000	0.000	0.5845	0.000	0.000
0.572	0.021	0.585	0.676	0.020	0.454	0.772	0.017	0.405	0.910	0.016	0.299
0.993	0.046	0.765	1.043	0.040	0.682	1.176	0.036	0.589	1.318	0.034	0.515
1.613	0.079	0.839	1.696	0.075	0.789	1.696	0.060	0.695	1.998	0.065	0.657
2.330	0.124	0.877	2.368	0.113	0.838	2.471	0.098	0.770	2.595	0.094	0.715
2.985	0.165	0.897	3.110	0.154	0.866	3.103	0.129	0.803	3.316	0.128	0.761
3.716	0.213	0.910	3.927	0.202	0.883	3.885	0.170	0.833	3.975	0.160	0.788
4.462	0.262	0.918	4.593	0.241	0.893	4.496	0.202	0.846	4.661	0.193	
5.217	0.319	0.924	5.423	0.294	0.901	5.224	0.241	0.855	5.316	0.223	0.818
5.965	0.380	0.927	6.192	0.343	0.903	5.904	0.277	0.863	6.000	0.259	0.827
6.727	0.440	0.928	6.892	0.391	0.905	6.645	0.323	0.863	6.727	0.298	0.833
7.483	0.508	0.927	7.586	0.439	0.905	7.373	0.365	0.865	7.503	0.339	0.837
8.245	0.580	0.925	8.286	0.493	0.904	8.032	0.403	0.862	8.231	0.373	0.838
8.993	0.660	0.919	8.986	0.548	0.899	8.801	0.454	0.859	8.952	0.415	0.837
9.707	0.742	0.906	9.686	0.608	0.893	9.618	0.514	0.848	9.645	0.456	0.832
10.112	0.805	0.884	10.380	0.673	0.879	10.366	0.575	0.844	10.345	0.500	0.825
			10.942	0.743	0.848	11.052	0.633	0.837	11.045	0.548	0.813
									11.732	0.608	0.789
									12.027	0.643	0.765
$T=403.07 \mathrm{~K}$			$T=419.15 \mathrm{~K}$			$T=433.21 \mathrm{~K}$			$T=448.81 \mathrm{~K}$		
0.7935	0.000	0.000	1.0870	0.000	0.000	1.3930	0.000	0.000	1.8250	0.000	0.000
1.002	0.009	0.167	1.297	0.009	0.129	1.682	0.012	0.137	2.018	0.009	0.076
1.483	0.028	0.403	1.682	0.024	0.294	2.011	0.024	0.247	2.547	0.028	0.222
2.128	0.055	0.552	2.224	0.045	0.433	2.540	0.045	0.368	2.979	0.045	0.305
2.849	0.086	0.638	2.931	0.074	0.540	3.226	0.072	0.470	3.638	0.071	0.391
3.563	0.118	0.690	3.638	0.105	0.602	3.961	0.101	0.534	4.352	0.099	0.455
4.373	0.154	0.725	4.469	0.138	0.652	4.702	0.132	0.580	5.101	0.130	0.502
5.197	0.190	0.751	5.135	0.168	0.675	5.382	0.160	0.608	5.842	0.159	0.532
5.959	0.225	0.767	5.842	0.198	0.695	6.165	0.193	0.632	6.556	0.190	0.555
6.707	0.260	0.776	6.652	0.233	0.711	6.892	0.224	0.648	7.256	0.221	0.570
7.579	0.302	0.782	7.338	0.264	0.717	7.558	0.255	0.657	8.004	0.255	0.579
8.334	0.340	0.783	8.128	0.301	0.721	8.272	0.288	0.663	8.732	0.292	0.581
9.110	0.380	0.786	8.924	0.337	0.725	9.020	0.324	0.664	9.501	0.333	0.575
9.865	0.421	0.779	9.741	0.382	0.720	9.714	0.358	0.661	10.235	0.384	0.549
10.544	0.463	0.771	10.544	0.427	0.711	10.400	0.397	0.646	10.510	0.419	0.514
11.217	0.508	0.756	11.361	0.483	0.685	11.100	0.451	0.622			
11.876	0.562	0.729	11.780	0.526	0.652	11.293	0.477	0.597			
$T=463.23 \mathrm{~K}$			$T=478.17 \mathrm{~K}$			$T=493.11 \mathrm{~K}$					
2.2871	0.000	0.000	2.8682	0.000	0.000	3.5330	0.000	0.000			
2.684	0.015	0.105	3.103	0.010	0.054	3.879	0.014	0.049			
3.206	0.035	0.203	3.611	0.029	0.137	4.393	0.035	0.107			
3.858	0.060	0.294	4.318	0.057	0.220	5.018	0.063				
4.559	0.090	0.361	5.046	0.088	0.279	5.698	0.096	0.211			
5.348	0.121	0.410	5.801	0.120	0.322	6.336	0.130	0.242			
6.144	0.154	0.445	6.453	0.150	0.346						
6.899	0.186	0.467	7.119	0.184	0.360						
7.647	0.222	0.479	7.757	0.221	0.357						
8.382	0.260	0.481	8.121	0.254	0.333						
9.082	0.305	0.467									
9.398	0.333										

For both equations, the temperature dependence of the constant a is given by an expression based on the Pitzer acentric factor (8,9). The parameters b_{11} and b_{22} are evaluated from critical data for the pure components.

The binary interaction parameter k_{12} is adjusted for each
isotherm individually to produce the best fil by the equations of state to the experimental data. No attempt was made to optimize the fit by adjusting the binary parameter j_{12}, which was taken to be zero for this work. The values of k_{12} so calculated are presented in Table III along with the root mean square

Table II．Critical Line of the Carbon Dioxide（1）＋
Cyclopentane（2）System：Critical Temperature T，Critical Pressure p ，Critical Mole Fraction \mathbf{x}_{1}

T / K	p / MPa	x_{1}	T / K	p / MPa	x_{1}
304.19	7.382	1.000	419.15	11.91	0.591
313.08	7.88	0.959	433.21	11.42	0.540
328.23	8.97	0.911	448.81	10.58	0.468
344.70	10.13	0.845	463.23	9.52	0.392
358.06	11.03	0.799	478.17	8.19	0.295
375.15	11.73	0.763	493.11	6.64	0.202
388.11	12.14	0.707	511.75	4.513	0.000
403.07	12.20	0.652			

Figure 3．Equilibrium ratios for carbon dioxide＋cyclopentane at four temperatures．The symbols denote isotherms as follows： $\mathbf{O}, 293.14$ K；©，358．06 K；口，419．15 K；由，478．17 K．

Figure 4．Temperature－mole fraction dlagram for carbon dioxide＋ cyctopentane．The symbots denote isobars as follows：©， 1 MPa ； O ，
 interpolated along isotherms of ref 4 are denoted by \times and vapor data by + ．
deviations of the vapor， $\mathrm{rms}(y)$ ，and Ilquid， $\mathrm{rms}(x)$ ，compositions． We observe that the k_{12}＇s for the PR equation show a minimum near 350 K，whereas Eckert and Sandler（4）see a sharp in－ crease over their temperature range（ $310-333 \mathrm{~K}$ ）．Three typ－ ical isotherms are plotted in Flgure 5．The fit of both equations of state to the data are comparable，especially at low tem－

Table III．Root Mean Square Deviations between
Calculated and Experimental Liquid，rms（x），and Vapor， rms（ \boldsymbol{y} ），Mole Fractions Using the Soave－Redlich－Kwong （SRK）and Peng－Robinson（PR）Equations of State（EOS） with Adjusted Interaction Parameters \boldsymbol{k}_{12} for the System Carbon Dioxide＋Cyclopentane

T / K	EOS	k_{12}	$\operatorname{rms}(x)$	$\operatorname{rms}(y)$
276.64	PR	0.133	0.0168	0.0180
	SRK	0.134	0.0179	0.0192
293.14	PR	0.127	0.0181	0.0122
	SRK	0.129	0.0202	0.0143
313.08	PR	0.123	0.0148	0.0138
	SRK	0.125	0.0151	0.0162
328.23	PR	0.119	0.0121	0.0194
	SRK	0.125	0.0118	0.0210
344.70	PR	0.116	0.0211	0.0194
	SRK	0.124	0.0197	0.0209
358.06	PR	0.118	0.0159	0.0291
	SRK	0.124	0.0155	0.0304
375.15	PR	0.116	0.0162	0.0140
	SRK	0.128	0.0153	0.0173
388.11	PR	0.120	0.0121	0.0154
	SRK	0.129	0.0123	0.0195
403.70	PR	0.130	0.0100	0.0188
	SRK	0.143	0.0101	0.0238
419.15	PR	0.133	0.0095	0.0212
	SRK	0.144	0.0110	0.0280
433.21	PR	0.138	0.0096	0.0204
	SRK	0.152	0.0113	0.0287
448.81	PR	0.141	0.0104	0.0214
	SRK	0.139	0.0170	0.0297
463.23	PR	0.162	0.0083	0.0202
	SRK	0.197	0.0083	0.0285
478.17	PR	0.178	0.0080	0.0195
	SRK	0.181	0.0124	0.0268
493.11	PR	0.232	0.0010	0.0075
	SRK	0.266	0.0011	0.0039

Figure 5．Comparison of three isotherms with equation of state calculations．Symbols denote isothermal data as follows：O， 293.14 K；$\Delta, 388.11 \mathrm{~K}$ ；由，478．17 K．The predictions of the Soave－Red－ lich－Kwong equation are shown by dashed lines and the Peng－Rob－ inson equation by solld lines．
peratures．At higher temperatures，the fit for the SRK equation is marginally worse than for the PR equation．One can see in Figure 5 that，for the isotherms above the critical temperature of CO_{2} ，the cubic equations glve a critical pressure that is greater than the experimental values．Both equations predict vapor－phase composition values greater than the experimental values，especially at the higher temperatures．The predicted vapor compositions are relatively insensitive to $k_{1_{2}}$ ．The de－ viations between the fits to cubic equations and experimental
data are in the opposite direction for this system from the devations seen for $\mathrm{CO}_{2}+2$,2-dimethylpropane (3).

Llat of Symbols

$a, b \quad$ coefficients in cubic equation of state
$a_{i}, b_{y} \quad$ coefficients in quadratic mixing rules for equation of state
il interaction parameter describing devlations from the linear combining rule for covolumes in the SRK equation
$k_{i /} \quad$ interaction parameter describing deviations from the geometric mean combining rule for the unllike pair attraction parameter in cubic equations
$K_{1} \quad \equiv y_{i} / x_{1}$
p pressure
$R \quad$ molar gas constant
rms (x, y) root mean square deviation between calculated and experimental mole fractions on one isotherm
T absolute temperature
V molar volume
$x_{i} \quad$ liquid mote fraction of component i
$y_{i} \quad$ vapor mole fraction of component I
Reglatry No. CO_{2}, 124-38-9; cyclopentane, 287-92-3.

Literature Cited

(1) Cheng, H.; Pozo de Fernándezz, M. E.; Zollweg, J. A.; Streett, W. B. J. Chem. Eng. Data 1989, 34, 319.
(2) Pozo de Fernândez, M. E.; Zollweg, J. A.; Streett, W. B. J. Chem. Eng. Data 1980, 34, 324.
(3) Shah, N. N.; Pozo de Fernández, M. E.; Zollweg, J. A.; Streett, W. B. J. Chem. Eng. Data 1990, 35, 278.
(4) Eckert, C. J.; Sandler, S. I. J. Chem. Eng. Data 1986, 31, 26.
(5) Pozo, M. E.; Streett, W. B. J. Chem. Eng. Data 1984, 29, 324.
(6) Chang, E.;' Calado, J. C. G.; Streett, W. B. J. Chem. Eng. Data 1982, 27, 293.
(7) Tsang, C. Y.; Streett, W. B. J. Chem. Eng. Data 1981, 26, 155.
(8) Soave, G. Chem. Eng. Scl. 1972, 27, 1197.
(9) Peng, D.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15, 59.

Received for review July 30, 1990. Accepted November 5, 1990. Thls work was supperted by the National Science Foundation under Grant No. CPE8104708.

High-Pressure Vapor-Llquid Equillbrium of Some Binary Mixtures of Cyclopentane, Argon, Nitrogen, n-Butane, and Neopentane

Pradeep Marathe and Stanley I. Sandler*
Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

Abstract

Accurate high-pressure vapor-Ilquld equillbrium and phase denslly data for binary systems of cyclopentane with carbon diloxide, nitrogen, and argon and of argon also with neopentane and n-butane are reported, each at two leotherms. These data are correlated with the Peng-Robinson equation of state using one- and two-parameter verslons of the van der Waals one-fiuld mixing rules with both generallzed and fluid-spectic equation of state parameters.

Introduction

This study is the continuation of a research program on the measurement of vapor-llquid equillbrium data for mixtures consisting of hydrocarbons and inorganic gases. A set of mixtures has been chosen for this purpose based on their relative interaction energles (as reflected in the values of the critical temperatures T_{c}) and on molecular size (based on values of critical molar volumes V_{c}). The mixtures consist of the inorganic gases $\mathrm{Ar}, \mathrm{N}_{2}$, and CO_{2} with the hydrocarbons n-butane, cyclopentane, and neopentane. The experimental data we obtain consist of pressure P, temperature T, liquid x_{i}, and vapor y_{1}, equilibrium mole fractions, and phase densities ρ, along two isotherms. Further we use these data to test the correlative ability of a simple cubic equation of state with various mixing rules. In this work we use the $P-T-x-y$ data to determine the optimal value of the binary equation of state interaction parameters, and then we predict the phase densities, which are compared with our measured values. This is an additional test of the accuracy of the equation of state and its mixing rules. Also, we compare the results of using both the

- To whom correspondence should be addressed.
generalized equation of state parameters and temperature-dependent parameters determined specifically for each fluid.

Equipment and Expertment

The apparatus used for the experiments was described by Shibata (1) and Shibata and Sandler (2). It consists of a visual equilibrium cell, recirculation pumps (vapor and liquid), and vi-brating-tube density meters. The circulating vapor is bubbled into the bottom of the cell, and the liquid is sprayed from the top, which ensures good vapor-liquid contact in the equilibrium cell; both phases are also circulated through the density meters. The entire system is enclosed in a constant-temperature air oven. System temperatures are monitored by flve thermocouples located in the cell with an accuracy of $\pm 0.05 \mathrm{~K}$. The pressure is measured with a dead weight tester coupled to a null differentlal pressure indicator with an accuracy of ± 0.14 bar at the high pressures measured here. Small separate samples of the equilibrated gas and liquid mixtures are drawn into evacuated and preheated gas bombs that contain motordriven mixers. The samples are analyzed with a gas chromatograph. The chromatograph, other ancillary equipment, and the calibration procedures used have all been described previously (2). The sampling procedures used usually lead to area fractions in the three sample injections with a standard deviation of 0.003 in mole fraction.

Results and Discuselon

The experimental data obtained in this work are reported in Table I. These data have been correlated with the PengRobinson equation of state (3)

$$
\begin{equation*}
P=\frac{R T}{V-b}-\frac{a}{V(V+b)+b(V-b)} \tag{1}
\end{equation*}
$$

